ILLINOIS POLLUTION CONTROL BOARD December 16, 2010

IN THE MATTER OF:)	
)	
REVISION OF ENHANCED VEHICLE)	R11-19
EMISSION INSPECTION AND)	(Rulemaking - Air)
MAINTENANCE (I/M) REGULATIONS:)	
AMENDMENTS TO 35 ILL. ADM. CODE)	
PART 240)	

Proposed Rule. Proposal for Public Comment.

OPINION AND ORDER OF THE BOARD (by A.S. Moore):

On December 8, 2010, the Illinois Environmental Protection Agency (Illinois EPA or Agency) filed a rulemaking proposal pursuant to Section 20 of the Vehicle Emissions Inspection Law of 2005 (VEIL of 2005) (625 ILCS 5/13C-20 (2008)); Section 10, 27, and 28 of the Environmental Protection Act (Act) (415 ILCS 5/10, 27, 28 (2008); and Sections 102.200 and 102.202 of the Board's procedural rules (35 Ill. Adm. Code 102.200 102.202). The Agency proposes to repeal various emissions test standards and to update definitions and incorporations. Among the documents accompanying the petition were a Statement of Reasons (SR) and a motion for waiver of copy requirements (Mot. Waive). *See* 415 ILCS 5/27(a) (2008), 35 Ill. Adm. Code 101.500, 102.110, 102.200, 102.402.

For the reasons stated below, the Board accepts the Agency's rulemaking proposal for hearing and grants the Agency's motion for waiver of copy requirements. The Board directs the Clerk to publish the proposal in the *Illinois Register* as a proposal for public comment.

LEGAL BACKGROUND

Clean Air Act

Section 182 of the federal Clean Air Act (CAA) requires states to implement vehicle inspection and maintenance (I/M) programs in areas that do not meet the National Ambient Air Quality Standards (NAAQS) for ozone. SR at 3, citing 42 U.S.C. § 7511a. Areas that do not meet these standards are known as "nonattainment" areas. The Agency reports that 1990 CAA amendments required "the use of 'basic' or 'enhanced' I/M programs and required USEPA [United States Environmental Protection Agency] to develop different performance standards for these two programs." SR at 3, citing 57 Fed. Reg. 52950 (Nov. 5, 1992). The Agency states that "[b]asic I/M programs are required in 'marginal' ozone nonattainment areas with existing I/M programs and in 'moderate' ozone nonattainment areas." SR at 3, citing 42 U.S.C. § 7511a. The

¹ In the interest of clarity, the Board has slightly revised the Agency's caption for this rulemaking to better reflect the nature of the proposal. The Board requests that the participants use the caption above in future filings.

Agency further states that "[e]nhanced I/M programs are required in 'serious,' 'severe,' and extreme' ozone nonattainment areas with urbanized populations of 200,000 or more." SR at 3, citing 42 U.S.C. § 7511a.

The Agency states that Illinois includes two nonattainment areas: "the Chicago metropolitan area which was classified as 'sever' under the revoked 1-hour ozone standard and now classified as 'moderate' under the current 8-hour standard; and the Metro-East St. Louis are which was redesignated to attainment of the 1-hour standard and is now classified as 'moderate' nonattainment for ozone under the current 8-hour standard." SR at 3-4, citing 40 C.F.R. § 81.314. The Agency notes that, although enhanced I/M was not required in the Metro-East St. Louis nonattainment area, Illinois opted to implement there as an element of its strategy to attain the ozone standard. SR at 4.

The Agency states that "USEPA has promulgated final regulations containing emissions testing standards and procedures for use in enhanced I/M testing programs, which it has amended over the years." SR at 4, citing 40 C.F.R Part 51, Subpart S; 40 C.F.R. Part 85, Subpart W. The Agency further states that, pursuant to these federal regulations, Illinois has enacted and amended the VEIL addressing enhanced I/M testing. SR at 4, citing 625 ILCS 5/13C (2009). The Board in Part 240 has adopted test standards implementing I/M. SR at 4 (citations omitted). The Agency adds that it submitted these regulations to USEPA Region V and that they have been approved as revisions to Illinois' State Implementation Program. *Id.* at 5 (citations omitted).

Statutory Authority for Rulemaking

The Agency first cites Sections 10(A), 27(a), and 28 of the Act as sources of the Board's general authority to adopt air pollution regulations. SR at 2, citing 415 ILCD 5/10(A), 27(a), 28 (2008). The Agency states that, "[i]n addition, this proposal is being filed under the authority of Section 13C-20(a) of the VEIL of 2005." SR at 2, citing 625 ILCS 5/13C-20(a) (2008).

Section 13C-20(a) of the VEIL of 2005 provides in pertinent part that

[t]he rules and emission standards adopted under subsection (a) of Section 13B-20 of this Code² shall apply to the program established under this Chapter and continue in effect until amended or repealed by the Board under this subsection.

² Chapter 13B, the Vehicle Emissions Inspection Law of 1995, was added by Public Act 88-533, effective January 18, 1994. Section 13B-99 provided that "[t]his Chapter 13B is repealed on July 1, 2007." 625 ILCS 5/13B-99 (2006). When in effect, Section 13B-20 provided in pertinent part that

[t]he Agency shall propose standards necessary to achieve reductions in the emission of hydrocarbons, carbon monoxide, and oxides of nitrogen from motor vehicles subject to inspection under this Chapter. Within 120 days after the Agency proposes these standards, the Board shall adopt rules establishing standards for the emission of hydrocarbons, carbon monoxide, and oxides of nitrogen from motor vehicles subject to inspection under this Chapter. These

The Agency shall propose any other standards necessary to achieve reductions in the emission of hydrocarbons, carbon monoxide, and oxides of nitrogen from motor vehicles subject to inspection under this Chapter. Within 120 days after the Agency proposes those standards, the Board shall adopt any necessary rules establishing standards for the emission of hydrocarbons, carbon monoxide, and oxides of nitrogen from motor vehicles subject to inspection under this Chapter. The rules may be amended from time to time pursuant to Agency proposals. The Board shall set standards necessary to achieve the reductions in vehicle hydrocarbons, carbon monoxide, and oxides of nitrogen emissions, as determined by the applicable vehicle emission estimation model and rules developed by the United States Environmental Protection Agency, that are required by the federal Clean Air Act.

* * *

Except as otherwise provided in this subsection, subsection (b) of Section 27 of the Environmental Protection Act and the rulemaking provisions of the Illinois Administrative Procedure Act do not apply to rules adopted by the Board under this subsection. 625 ILCS 5/13C-20(a) (2008).

The Agency clarifies that its rulemaking "is not being proposed as an identical-in-substance, fast-track or federally required rulemaking." SR at 2; see 415 ILCS 5/7.2 (identical-in-substance), 28.2 (federally required), 28.5 (fast-track).

SUMMARY OF AGENCY PROPOSAL

The Agency states that, when USEPA promulgated I/M regulations in 1992, it reserved sections of those regulations pending development of onboard diagnostic (OBD) testing. SR at 6, citing 57 Fed. Reg. 52950 (Nov. 5, 1992). The Agency further states that USEPA first established OBD I/M requirements and established mandatory OBD testing of 1996 and newer vehicles. SR at 6, citing 61 Fed. Reg. 40940 (Aug. 6, 1996). The Agency argues that the federal

rules may be amended from time to time pursuant to Agency proposals. The Board shall set standards necessary to achieve the reductions in vehicle hydrocarbons, carbon monoxide, and oxides of nitrogen emissions, as determined by the applicable vehicle emission estimation model and rules developed by the United States Environmental Protection Agency, that are required by the federal Clean Air Act.

* * *

Except as otherwise provided in this subsection, subsection (b) of Section 27 of the Environmental Protection Act and the rulemaking provisions of the Illinois Administrative Procedure Act do not apply to rules adopted by the Board under this subsection. 625 ILCS 5/13B-20(a) (2006); *see* Enhanced Vehicle Inspection and Maintenance (I/M) Regulations: Amendments to 35 Ill. Adm. Code 240, R01-12 (Dec. 7, 2000) (adopting amendments filed under Section 13B-20).

Chapter 13C, the VEIL of 2005, was added by Public Act 94-526, effective January 1, 2006.

regulations "did not require implementation of OBD testing until 1998 or 1999 depending on the area, and a vehicle required to have an OBD test would not fail the overall vehicle inspection and maintenance test if it failed the OBD test until January 1, 2000. SR at 6, citing 61 Fed. Reg. 40940 (Aug. 6, 1996). The Agency continues that, "[i]n 1998, USEPA amended the I/M rule to delay the date by which I/M programs had to implement OBD testing to no later than January 1, 2001, due to pending studies of the effectiveness of OBD testing." SR at 6, citing 63 Fed. Reg. 24429 (May 4, 1998). The Agency states that USEPA in 2001 adopted regulations providing states with option to extend the deadline for implementation of OBD testing. SR at 6, citing 66 Fed. Reg. 18156 (Apr. 5, 2001).

The Agency indicates that "OBD I/M pass/fail testing is now required for all subject vehicles of model year 1996 and newer." SR at 6, citing 40 C.F.R. §§ 51.351(c), 51.357(b)(4). The Agency further indicates that states may rely on the OBD I/M test "in lieu of the obsolete and non-beneficial IM240 [transient loaded mode] and other exhaust and evaporative tests." SR at 6, citing 40 C.F.R. § 51.357(a)(12); 66 Fed. Reg. 18156 (Apr. 5, 2001). The Agency also states that "federal regulations allow states to vary vehicle model year coverage from USEPA's model program assumptions regarding model year coverage provided necessary emission reductions are achieved." SR at 6-7.

The Agency states that the General Assembly in 1984 first adopted a Vehicle Emissions Inspection Law and established authority for an I/M program. SR at 7, citing 625 ILCS 5/13A (1984). The Agency further states that the General Assembly in 1994 "adopted the VEIL of 1995 which provided authority for the Agency to implement enhanced I/M." SR at 7, citing 625 ILCS 5/13B (1995). The Agency adds that the General Assembly in 1995 adopted the VEIL of 1995, which, among other elements, "added the OBD test as the primary I/M test. . . ." SR at 7. The Agency claims that amended federal regulations requiring mandatory OBD pass/fail testing were the source of the VEIL of 2005. *See id*.

The Agency states that the purpose of its proposal "is to repeal the IM240 test emission standards, including corresponding definitions and references." SR at 7. The Agency claims that "[t]he effect of repealing the IM240 test emission standards is to essentially reflect full applicability of federal OBD pass/fail testing in accordance with, and as required by, federal law and the VEIL of 2005." *Id.* at 7-8. The Agency states that "[a]ll other test standards (OBD, steady-state idle exhaust, evaporative system integrity, and on-road remotes sensing) remain in the rule." *Id.* at 8. The Agency notes that it is concurrently amending its own procedural rules to reflect the applicability of these authorities. *Id.* at 8; *see* 35 Ill. Adm. Code 276 (Procedures to be Followed in the Performance of Inspection of Motor Vehicle Emissions).

The Agency states that an additional purpose of its proposal is "to repeal all pre-1996 test emission standard as a result of the exemption of 1995 and older vehicles from emissions testing in accordance with the VEIL of 2005." SR at 8; *see* 625 ILCS 5/13C-15 (2008). The Agency elaborates that "[t]his includes pre-1996 test emissions standards for the steady-state idle exhaust, evaporative system integrity, and on-road remotes sensing tests." SR at 8. The Agency adds that its proposal also consists of updates, corrections, and other minor amendments. *Id.*

MOTION FOR WAIVER OF COPY REQUIREMENTS

The Agency notes that "Section 102.200 of the Board's procedural rules requires that the original and nine copies of each regulatory proposal be filed with the Clerk." Mot. Waive at 1, citing 35 Ill. Adm. Code 102.200. The Agency also notes that Section 27 of the Act requires the Agency to provide information supporting its rulemaking proposal. Mot. Waive at 1, citing 415 ILCS 5/27(a) (2008). The Agency reports that, in drafting the rulemaking proposal, it relied on the following documents:

- a) Clean Air Act (42 U.S.C. 7401 et seq.)
- b) Vehicle Emissions Inspection Law of 2005 (625 ILCS 5/13C)
- c) 40 CFR Part 51, Subpart S (2009)
- d) 40 CFR Part 85, Subpart W (2009)
- e) 66 Fed. Reg. 18156-79 (April 5, 2001)
- f) "Reinventing the Illinois I/M Program, 2005 Clean Air Conference," James Matheny, Illinois Environmental Protection Agency, September 2005
- g) "The Road to OBD Only Insights and Changes, I/M Solutions," Stephen W. Thorpe, Illinois Environmental Protection Agency, June 2, 2009
- h) "VOC Reduction (TPD) for the Chicago Area from the Pre-'07 I/M Program and the '070On I/M Program," Sam Long, Illinois Environmental Protection Agency, June 11, 2009
- i) "VOC Reduction (TPD) for the Metro-East Area from the Pre-'07 I/M Program and the '07-On I/M Program," Sam Long, Illinois Environmental Protection Agency, October, 2010. Mot. Waive at 1-2.

The Agency claims that documents (a) - (e) "are readily accessible to or are within the possession of the Board." *Id.* at 2. Based on this accessibility, the Agency moves "that the Board waive the requirement that the Illinois EPA provide copies of such documents." *Id.*

The Agency states that "[t]he remainder of the regulatory proposal consists of over 800 pages." Mot. Waive at 2. Based on that length and the resources necessary to produce nine copies, the Agency "requests that the Board waive the normal requirements and allow Illinois EPA to file the original and four complete copies of such documents.

DISCUSSION

Rulemaking Proposal

The Board finds that the Agency's rulemaking proposal meets the content requirements of the Board's procedural rules and accepts the petition for hearing. *See* 35 Ill. Adm. Code 102.202.

Motion for Waiver of Copy Requirements

Section 101.500(d) of the Board's procedural rules provides in pertinent part that, "[w]ithin 14 days after service of a motion, a party may file a response to the motion. . . . Unless undue delay or material prejudice would result, neither the Board nor the hearing officer will grant any motion before expiration of the 14 day response period. . . . " 35 Ill. Adm. Code 101.500(d). Because the Board is required to adopt rules within 120 days of receiving the Agency's proposal on December 8, 2010, and in the absence to date of any opposition to the Agency's motion, the Board concludes that undue delay would result from allowing the 14-day response period to run. Accordingly, the Board turns to considering the motion. Having reviewed the substance of that motion, the Board grants it and waives copy requirements as requested by the Agency.

Board Procedure

Above, the Board accepted the Agency's proposal for hearing. Because Section 13C-20 of the VEIL of 2005 (625 ILCS 5/13C-20-(2008)) requires the Board to adopt rules within 120 days of receiving the Agency's proposal, the Board will submit the proposal to publication in the *Illinois Register* as a proposal for public comment without commenting on its substantive merits. The assigned hearing officer will establish a deadline for filing public comments.

Under Section 28 of the Act (415 ILCS 5/28 (2008)), the Board will hold at least two hearings on the proposal. The assigned hearing officer will establish dates and locations for the hearings. After considering the issued raised at the hearings and in public comments, the Board will issue a final opinion and order and publish adopted rules in the *Illinois Register*.

Under Section 13C-20(a) of the VEIL of 2005 (625 ILCS 5/13C-20(a) (2008)), Section 27(b) of the Act (415 ICLS 5/27(b) (2008)) and the rulemaking provisions of the Administrative Procedure Act (5 ILCS 100/1-1 *et seq.* (2008)) "do not apply to rules adopted by the Board under this subsection." 625 ILCS 5/13C-20(a) (2008). Accordingly, the Board will not request that the Department of Commerce and Economic Opportunity conduct an economic impact study of this rulemaking proposal. The Board will also not submit the proposal to first or second notice pursuant to Section 5-40 of the Administrative Procedure Act. (5 ILCS 100/5-40 (2008)). The Board will, however conduct hearings and solicit comment as described above. *See generally* Enhanced Vehicle Inspection and Maintenance (I/M) Regulations: Amendment to 35 Ill. Adm. Code 240, R01-12 (Aug. 24, 2000) (accepting Agency proposal for hearing under repealed Section 13B).

CONCLUSION

For the reasons stated above, the Board accepts the Agency's rulemaking for hearing and grants the Agency's motion for waiver of copy requirements. Also, the Board directs the Clerk to provide publication of the proposal in the *Illinois Register* as a proposal for public comment. Finally, the Board directs its hearing officer to take any necessary steps to avoid delay in completing the record so that the Board may meet its 120-day deadline for adopting rules.

ORDER

The Board directs the Clerk to provide publication of the following proposal in the *Illinois Register* as a proposal for public comment.

TITLE 35: ENVIRONMENTAL PROTECTION SUBTITLE B: AIR POLLUTION CHAPTER I: POLLUTION CONTROL BOARD SUBCHAPTER k: EMISSION STANDARDS AND LIMITATIONS FOR MOBILE SOURCES

PART 240 MOBILE SOURCES

SUBPART A: DEFINITIONS AND GENERAL PROVISIONS

Section	
240.101	Preamble
240.102	Definitions
240.103	Prohibitions
240.104	Inspection
240.105	Penalties
240.106	Determination of Violation
240.107	Incorporations by Reference

SUBPART B: EMISSIONS

Section	
240.121	Smoke Emissions
240.122	Diesel Engine Emissions Standards for Locomotives
240.123	Liquid Petroleum Gas Fuel Systems
240.124	Vehicle Exhaust Emission Standards (Repealed)
240.125	Compliance Determination (Repealed)

SUBPART C: SMOKE OPACITY STANDARDS AND TEST PROCEDURES FOR DIESEL-POWERED HEAVY DUTY VEHICLES

Section

240.140 240.141	Applicability Smoke Opacity Standards and Test Procedures for Diesel-Powered Heavy Duty Vehicles
SUBPA	ART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS
Section	
240.151	Applicability
240.152	Steady-State Idle Mode Vehicle Exhaust Emission Standards
240.153	Compliance Determination
SUBPART I	E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS (Repealed)
Section	
240.161	Applicability (Repealed)
240.162	Vehicle Exhaust Emission Start-Up Standards (Repealed)
240.163	Vehicle Exhaust Emission Final Standards (Repealed)
240.164	Vehicle Exhaust Emission Fast-Pass Standards (Repealed)
240.165	Compliance Determination (Repealed)
	SUBPART F: EVAPORATIVE TEST STANDARDS
Section	
240.171	Applicability
240.172	Evaporative System Integrity Test Standards
240.173	Evaporative System Purge Test Standards (Repealed)
SUBPA	ART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS
240.181	Applicability
240.182	On-Road Remote Sensing Emission Standards
240.183	Compliance Determination
	SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS
240.191	Applicability
240.192	On-Board Diagnostic Test Standards
240.193	Compliance Determination
240.APPEND	IX A Rule into Section Table
240.APPEND	
240.TABLE A	Vehicle Exhaust Emission Start-Up Standards (Repealed)
240.TABLE B	<u> </u>
240.TABLE C	
	· · · · · · · · · · · · · · · · · · ·

AUTHORITY: Implementing Sections 9 and, 10 and 13 and authorized by Sections 27 and 28 of the Environmental Protection Act [415 ILCS 5/9, 10, 13, and 27, and 28] and Section 13CB-20 of the Vehicle Emissions Inspection Law of 20051995 [625 ILCS 5/13CB-20]; implementing Section 13-109.2 of the Illinois Vehicle Code [625 ILCS 5/13-109.2].

SOURCE: Adopted as Chapter 2: Air Pollution, Part VII: Mobile Sources, filed and effective April 14, 1972; codified at 7 Ill. Reg. 13628; amended in R85-25, at 10 Ill. Reg. 11277, effective June 16, 1986; amended in R90-20 at 16 Ill. Reg. 6184, effective April 7, 1992; amended in R94-20 at 18 Ill. Reg. 18013, effective December 12, 1994; amended in R94-19 at 18 Ill. Reg. 18228, effective December 20, 1994; amended in R98-24 at 22 Ill. Reg. 13723, effective July 13, 1998; expedited correction at 22 Ill. Reg. 21120, effective July 13, 1998; amended in R01-12 at 24 Ill. Reg. 19188, effective December 18, 2000; amended in R01-8 at 25 Ill. Reg. 3680, effective February 26, 2001; amended in R02-8 at 25 Ill. Reg. 16379, effective December 18, 2001; amended in R11-19 at 35 Ill. Reg. ______, effective ______. BOARD NOTE: This part implements the Environmental Protection Act as of July 1, 1994.

SUBPART A: DEFINTIONS AND GENERAL PROVISIONS

Section 240.102 Definitions

All terms which appear in this Part have the definitions specified in this <u>SectionPart</u>, the <u>Vehicle Emissions Inspection Law of 2005 [625 ILCS 5/13C]</u>, and 35 Ill. Adm. Code 201 and 211. Where conflicting definitions occur <u>between this Section and 35 Ill. Adm. Code 201 or 211</u>, the definitions of this Section apply in this Part.

- "Adjusted loaded vehicle weight ("ALVW") means the value of the vehicle curb weight plus gross vehicle weight rating divided by two.
- "Agency" means the Illinois Environmental Protection Agency.
- "Diesel engine" means all types of internal-combustion engines in which air is compressed to a temperature sufficiently high to ignite fuel injected directly into the cylinder area.
- "Diesel locomotive" means a diesel engine vehicle designed to move cars on a railway.
- "Evaporative system integrity test" means a test of a vehicle's evaporative system. The test shall either consist of a leak check of a vehicle's fuel cap with a fuel cap pressure decay tester (fuel cap pressure decay test), a fuel cap leak flow tester (fuel cap leak flow test), or a visual functional check, as applicable.
- "Fuel cap" means a device used to seal a vehicle's fuel inlet.
- "Fuel cap leak flow test" means a test which may be performed in accordance

with this Part on a vehicle's fuel cap using a fuel cap leak flow tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Fuel cap leak flow tester" means a device used to determine the leak flow integrity of a vehicle's fuel cap by comparing the measured leak flow of the fuel cap with an established fuel cap leak flow standard.

"Fuel cap pressure decay test" means the test performed in accordance with this Part on a vehicle's fuel cap using a fuel cap pressure decay tester to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Fuel cap pressure decay tester" means a device used to determine the pressure decay integrity of a vehicle's fuel cap by monitoring the pressure behind the fuel cap for a ten second period and comparing the measured pressure decay of the fuel cap to an established fuel cap pressure decay standard.

"Fuel cap visual functional test" means the test performed in accordance with this Part on a vehicle's fuel cap using visual analysis to determine whether the vehicle complies with the evaporative system emission standards of this Part.

"Full power position" means the throttle position at which the engine fuel delivery is at maximum flow.

"Gross vehicle weight rating (GVWR)" means the value specified by the manufacturer as the maximum design loaded weight of a single vehicle.

"Heavy duty vehicle" means any motor vehicle rated at more than 8500 pounds GVWR or that has a vehicle curb weight of more than 6000 pounds or that has a basic vehicle frontal area in excess of 45 square feet.

"High idle" means a vehicle operating condition with engine disconnected from an external load (placed in either neutral or park) and operating at speed of 2500 ± 300 RPM.

"IM240" means the transient mass emissions inspection procedure that the USEPA developed and has been implemented for the use in the Illinois Enhanced Vehicle Inspection and Maintenance Program. 240 refers to the 240 second maximum duration of the driving cycle that the vehicle undergoes as it is positioned on the dynamometer and essentially driven for the purpose of measuring the mass amount of emissions coming out of the tail pipe.

"Idle mode" means that portion of a vehicle emission test procedure conducted with the engine disconnected from an external load and operating at minimum throttle.

"Initial idle mode" means the first of up to two idle mode sampling periods during a steady-state idle mode test, during which exhaust emission measurements are made with the vehicle in "as-received" condition.

"Light duty truck 1" means a motor vehicle rated at 6000 pounds maximum GVWR or less and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of more than 12 persons, or is available with special features enabling off-street or off-highway operation and use.

"Light duty truck 2" means a motor vehicle rated between 6001 and 8500 pounds maximum GVWR and which has a vehicle frontal area of 45 square feet or less, and which is designed primarily for purposes of transportation of property or is a derivation of such a vehicle, or is designed primarily for transportation of persons and has a capacity of more than 12 persons, or is available with special features enabling off-street or off-highway operation and use.

"Light duty vehicle" means a passenger car or passenger car derivative capable of seating 12 passengers or fewer.

"Loaded mode" means that portion of a vehicle emission test procedure conducted with the vehicle positioned and operating under load on a chassis dynamometer.

"Loaded vehicle weight (LVW)" means the vehicle curb weight plus 300 pounds.

"Measured values" means five-second running averages of exhaust emission concentrations sampled at a minimum rate of twice per second.

"Model year" means the year of manufacture of a motor vehicle based upon the annual production period as designated by the manufacturer and indicated on the title and registration of the vehicle. If the manufacturer does not designate a production period for the vehicle, then "model year" means the calendar year of manufacture.

"Motor vehicle" as used in this Part, shall have the same meaning as in Section 1-146 of the Illinois Vehicle Code [625 ILCS 5/1-146].

"Opacity" means the percentage of light transmitted from a source that is prevented from reaching a light detector.

"Preconditioning mode" means a period of steady-state loaded mode or high-idle operation conducted to ensure that the engine and emissions control system components are operating at normal operating temperatures, thus minimizing

false failures caused by improper or insufficient warm-up.

"Second-chance idle mode" means the second of two idle mode sampling periods during a steady-state idle mode test, preceded by a preconditioning mode and utilized as a second chance to pass idle exhaust emission standards immediately following an initial idle mode failure.

"Snap-acceleration test" means a test to measure exhaust smoke opacity from heavy-duty diesel powered vehicles in accordance with the SAE J1667 procedure, incorporated by reference at Section 240.107 of this Subpart.

"Steady-state idle test" means a vehicle emission test procedure consisting of an initial idle mode measurement of exhaust emissions followed, if necessary, by a loaded or high idle preconditioning mode and a second-chance idle mode.

"Transient loaded mode test" or "IM240 testing" or "transient IM240 loaded mode exhaust emission test procedure" or "transient IM240 test procedure" means a vehicle emissions test run on an inertial and power absorbing dynamometer using USEPA's IM240 driving cycle consisting of accelerations and decelerations simulating on-road driving conditions.

"Vehicle curb weight" means the actual vehicle weight plus standard equipment and a full fuel tank.

Section 240.104 Inspection

- a) All motor vehicles subject to inspection pursuant to Section 13<u>CB</u>-15 of the Vehicle Emissions Inspection Law of 20051995 [625 ILCS 5/13<u>CB</u>-15] shall comply with applicable vehicle emission standards contained in Sections 240.152, 240.162, 240.163, 240.172, 240.182, and 240.192 of this Part.
- b) All diesel-powered vehicles subject to inspection pursuant to Section 13-109.1 of the Illinois Vehicle Code [625 ILCS 5/13-109.1] must comply with applicable smoke opacity standards set forth in Section 240.141(a) of this Part.

(Source:	Amended at 35	T11	Reg	effective	
1	Bource.	Timenaca at 33	111.	105	CIICCLIVC	/

Section 240.105 Penalties

a) Any violations of Sections 240.103, 240.121, 240.122, <u>orand</u> 240.123 of this Part shall be subject to the penalties as set forth in Section 42 of the Act [415 ILCS 5/42].

- b) Any violations of Sections 240.104(b), 240.152, 240.162, 240.163, 240.172, 240.182, orand 240.192 of this Part shall be subject to the penalties as set forth in Sections 13CB-55 and 13CB-60 of the Vehicle Emissions Inspection Law [625 ILCS 5/13CB-55 and 13CB-60].
- c) Any violation of Section 240.141(a) of this Part will be subject to penalties as set forth in Section 13-109.1 of the Illinois Vehicle Code [625 ILCS 5/13-109.1].

(Source, Amenaca at 33 m. Reg. Cricente	(Source:	Amended at 35	Ill. Reg.	, effective	
---	----------	---------------	-----------	-------------	--

Section 240.106 Determination of Violation

- a) Any violations of Sections 240.103, 240.121, 240.122, <u>orand</u> 240.123 of this Part shall be determined by visual observation or by a test procedure employing an opacity measurement system as qualified by 35 Ill. Adm. Code 201, Subpart J.
- b) Any violations of Sections 240.152, 240.162, 240.163, 240.172, 240.182, or 240.192 of this Part shall be determined in accordance with test procedures adopted by the Agency in 35 Ill. Adm. Code 276.
- c) Any violation of Section 240.141(a) of this Part will be determined in accordance with test procedures set forth in Section 240.141(b) of this Part.

(Source:	Amended	at 35 III	Reg	. effective	`
(Source.	Amenaca	at JJ III	. IXCE.	. CHCCHYC	

Section 240.107 Incorporations by Reference

The following materials <u>isare</u> incorporated by reference and includes no later editions or amendments:

- a) Society of Automotive Engineers (SAE), 400 Commonwealth Drive, Warrendale, PA 15096-0001, www.sae.org: Report J1667 Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles (February 1996).
- b) United States Environmental Protection Agency (USEPA), "High-Tech I/M Test Procedures, Emission Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance," Report EPA-AA-RSPD-IM-96-1 (June 1996), 2565 Plymouth Road, Ann Arbor, MI 48105.

(Source:	Amended	at 35	III. Reg	. effective	

SUBPART D: STEADY-STATE IDLE MODE TEST EMISSION STANDARDS

Section 240.151 Applicability

The standards of <u>this Subpart D-apply</u> to <u>thoseall</u> vehicles <u>identified in subsection 13C-25(d)</u> <u>inspected upon implementation of the Vehicle Emissions Inspection Law of 20051995 and identified in Subsections 13CB-25(c) and (d) of that law utilizing steady-state exhaust emission test procedures adopted by the Agency.</u>

(Source: Amended at 35 Ill. Reg.____, effective ____)

Section 240.152 Steady-State Idle Mode Vehicle Exhaust Emission Standards

a) Exhaust emissions from light duty vehicles shall not exceed the following limitations:

Model Year	Carbon Monoxide	Hydrocarbons as Hexane
	(%)	(ppm)
1968 - 1971	9.0	900
1972 - 1974	8.0	800
1975 - 1977	7.0	700
1978 - 1979	6.0	600
1980	3.0	300
19 <u>96</u> 81 and newerlater	1.2	220

b) Exhaust emissions from light duty trucks 1 and light duty trucks 2 shall not exceed the following limitations:

Model Year	Carbon Monoxide	Hydrocarbons as Hexane
	(%)	(ppm)
1968 - 1971	9.0	900
1972 - 1974	8.0	800
1975 - 1978	7.0	700
1979 - 1980	6.0	600
19 <u>96</u> 81 and newerlater	1.2	220

c) Exhaust emissions from heavy duty vehicles shall not exceed the following limitations:

Model Year	Carbon Monoxide	Hydrocarbons as Hexane
	(%)	(ppm)
1968 - 1971	9.5	1500
1972 - 1978	9.0	900
1979 - 1984	7.0	700
199685 and newerlater	3.0	300

(Source: Amended at 35 Ill. Reg.____, effective ____)

Section 240.153 Compliance Determination

Compliance shall be determined based upon the measurement of exhaust emissions using the steady-state idle test while the vehicle to be tested is operating in the idle mode. The vehicle shall pass exhaust emissions inspection if at any time during the initial idle mode or second-chance idle mode of the steady-state idle test the measured values are at or below the applicable limits of Section 240.152 of this Subpart. Vehicles failing the initial idle mode shall undergo a loaded or high idle preconditioning mode and receive a second-chance idle mode unless no measured values less than 1800 ppm HC are obtained within an elapsed time of 30 seconds.

(Source: Amended at 35 Ill. Reg.____, effective ____)

SUBPART E: TRANSIENT LOADED MODE TEST EMISSION STANDARDS (Repealed)

Section 240.161 Applicability (Repealed)

The standards of this Subpart apply to model year 1981 and newer light duty vehicles, light duty trucks 1, and light duty trucks 2 which are inspected utilizing transient IM240 loaded mode exhaust emission test procedures adopted by the Agency in 35 III. Adm. Code 276.

(Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.162 Vehicle Exhaust Emission Start-Up Standards (Repealed)

Vehicle exhaust emission start-up standards contained in Section 240.Table A of this Part shall apply for all vehicles subject to inspection until January 31, 2001. From February 1, 2001, onward, these standards shall continue to apply to all model year 1981 through model year 1987 LDV, LDT1, and LDT2 vehicles. All standards are expressed in grams per mile (gpm).

(Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.163 Vehicle Exhaust Emission Final Standards (Repealed)

Beginning February 1, 2001, vehicle exhaust emission final standards contained in Section 240. Table B of this Part shall apply for all vehicles subject to except for model year 1981 through model year 1987 LDV, LDT1, and LDT2 vehicles, which shall continue to use the standards contained in Section 240. Table A of this Part as described in Section 240. 162. All standards are expressed in grams per mile (gpm).

(Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.164 Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

Vehicle exhaust emissions fast-pass standards contained in Section 240.Table C of this Part will apply for all vehicles subject to inspection under Section 240.161 of this Part utilizing the IM240

transient loaded mode exhaust emission test procedures that have been adopted by the Agency in 35 Ill. Adm. Code 276. All standards are expressed as the cumulative grams for each second of the composite and Phase 2 tests.

(Source:	Repealed a	t 35 III	Reg	effective)
(Dource.	repeated a	t 55 m.	ιτυς,	criccuve	/

Section 240.165 Compliance Determination (Repealed)

- Vehicle Exhaust Emission Start Up and Final Standards Compliance shall be a) determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. If the corrected, composite emission rates exceed standards for any pollutant, additional analysis of test results shall review the second phase ("Phase 2") of the driving cycle separately. Phase 2 shall include second 94 through second 239 of the driving eycle. Second-by-second emission rates in grams and composite emission rates in grams per mile for Phase 2 and for the entire composite test shall be recorded for each pollutant. For any given pollutant, if the composite emission level is at or below the composite standard or if the Phase 2 grams per mile emission level is at or below the applicable Phase 2 standard, then the vehicle shall pass the test for that pollutant. Composite and Phase 2 emission rates shall be calculated in accordance with procedures specified in "High-Tech I/M Procedures, Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance", incorporated by reference at Section 240.107(c) of this Part.
- b) Vehicle Exhaust Emission Fast-Pass Standards Compliance will be determined based upon the measurement of exhaust emissions while operating the vehicle on a dynamometer and following the driving cycle as specified for the transient IM240 test procedures adopted by the Agency. Vehicles will be fast-passed using the following algorithm:
 - Beginning at second 30 of the driving cycle, cumulative second by second emission levels for each second, calculated from the start of the cycle in grams, will be compared to the cumulative fast-pass emission standards for the second under consideration. Beginning at second 109, fast-pass decisions are based upon analysis of cumulative emissions in Phase 2, the portion of the test beginning at second 94, as well as emission levels accumulated from the beginning of the composite test.
 - 2) A vehicle will pass the transient IM240 test for a given pollutant if either of the following conditions occurs:
 - A) cumulative emissions of the pollutant are below the full cycle fastpass standard for the second under consideration; or

- B) at second 109 and later, cumulative Phase 2 emissions are below the Phase 2 fast-pass standards for the second under consideration.
- 3) Testing may be terminated when fast pass criteria are met for all subject pollutants in the same second.
- 4) If a fast-pass determination cannot be made for all subject pollutants before the driving cycle ends, the pass/fail determination for each component will be based on composite or Phase 2 emissions over the full driving cycle according to the procedures in subsection (a) of this Section. In cases where fast-pass standards are not used, composite emission rates in grams per mile for Phase 2 and for the entire composite test will be recorded for each pollutant.
- 5) Composite and Phase 2 emission rates will be calculated in accordance with procedures specified in "High-Tech I/M Procedures, Emissions Standards, Quality Control Requirements, and Equipment Specifications: IM240 and Functional Evaporative System Tests, Revised Technical Guidance" incorporated by reference at Section 240.107(c) of this Part.

(Source: Repealed at 35 Ill. Reg.____, effective ____)

SUBPART F: EVAPORATIVE TEST STANDARDS

Section 240.171 Applicability

The standards of this Subpart apply to those vehicles identified in subsection 13C-25(d) of the Vehicle Emissions Inspection Law of 2005The standards of Section 240.172 of this Subpart shall apply to all model year 1968 and newer vehicles required at the time of manufacture to be equipped with evaporative emission control systems.

(Source: Amended at 35 Ill. Reg.____, effective ____)

SUBPART G: ON-ROAD REMOTE SENSING TEST EMISSION STANDARDS

Section 240.181 Applicability

The standards of this Subpart apply to <u>thoseall</u> vehicles <u>tested pursuant to subsection 13C-15(b)(11)</u> of the Vehicle Emissions Inspection Law of 2005 which are inspected utilizing the onroad remote sensing exhaust emission test procedures that will be adopted by the Agency in 35 III. Adm. Code 276.

(Source: Amended at 35 Ill. Reg.____, effective ____)

Section 240.182 On-Road Remote Sensing Emission Standards

Exhaust emissions from all subject vehicles and trucks shall not exceed the following limitations:

Model Year	Hydrocarbons (ppm)	Carbon Monoxide (%)
199 <u>6 and newer</u> 2+	400	2.0
1988-1991	450	3.0
1981-1987	650	5.0
1975-1980	1300	7.0
1968-1974	1700	8.0

(Source: Amended at 35 Ill. Reg.____, effective ____)

SUBPART H: ON-BOARD DIAGNOSTIC TEST STANDARDS

Section 240.191 Applicability

The standards of this Subpart apply to those vehicles tested pursuant to subsection 13C-25(c) of the Vehicle Emissions Inspection Law of 2005 all 1996 and newer model year light duty vehicles, light duty trucks 1, and light duty trucks 2 that are required to meet the standards contained in 40 CFR § 86.094-17 and which are inspected utilizing the on-board diagnostic test procedures contained in 35 Ill. Adm. Code 276.209. Vehicles that receive a result of fail do not thereby fail their emissions test until January 1, 2002.

(Source: Amended at 35 Ill. Reg.____, effective ____)

Section 240.TABLE A Vehicle Exhaust Emission Start-Up Standards (Repealed)

Light Duty Vehicles:

Model Years	Hydrocarbons		Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+	0.80	0.50	15.0	12.0	2.0	Reserved
1991-1995	1.20	0.75	20.0	16.0	2.5	Reserved
1983-1990	2.00	1.25	30.0	24.0	3.0	Reserved
1981-1982	2.00	1.25	60.0	48.0	3.0	Reserved

Light Duty Trucks 1:

Model Years	Hydro	ocarbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+ -(≤ 3750	0.80	0.50	15.0	12.0	2.0	Reserved
LVW)	0.00	0.50	13.0	12.0	2.0	Reserved
(> 3750 LVW)	1.00	0.63	20.0	16.0	2.5	Reserved
1991_1995	2.40	1.50	60.0	48.0	3.0	Reserved
1988-1990	3.20	2.00	80.0	64.0	3.5	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

Light Duty Trucks 2:

Model Years	Hydroc	earbons	Carbon Mono	xide	Oxides of Nitro	gen
	Composite	Phase 2	Composite 1	Phase 2	Composite	Phase 2
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)
1996+						
<u>-(≤ 5750</u>	1.00	0.63	20.0	16.0	2.5	Reserved
<u>ALVW)</u>						
-(> 5750	2.40	1.50	60.0	48.0	4.0	Reserved
<u>ALVW)</u>						
1991-1995	2.40	1.50	60.0	48.0	4.5	Reserved
1988-1990	3.20	2.00	80.0	64.0	5.0	Reserved
1984-1987	3.20	2.00	80.0	64.0	7.0	Reserved
1981-1983	7.50	5.00	100.0	80.0	7.0	Reserved

(Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.TABLE B Vehicle Exhaust Emission Final Standards (Repealed)

Light Duty Vehicles:

Model Years	Hydrocarbons		Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+	0.60	0.40	10.0	-8.0	1.5	Reserved
1983-1995	0.80	0.50	15.0	12.0	2.0	Reserved

1001 1000	0.00	0.70	20.0	2.4.0	2 0	- ·
1981-1982	0.80	0.50	30.0	24.0	20	Pacarriad
1701-1702	$\overline{0.00}$	0.20	50.0	27.0	2.U	Nesei veu

Light Duty Trucks 1:

Model Years	Hydroc	earbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996+						
<u>-(≤ 3750</u>	0.60	0.40	10.0	8.0	1.5	Reserved
LVW)						
-(> 3750	0.80	0.50	13.0	10.0	1.8	Reserved
LVW)						
1988-1995	1.60	1.00	40.0	32.0	2.5	Reserved
1984-1987	1.60	1.00	40.0	32.0	4.5	Reserved
1981-1983	3.40	2.00	70.0	56.0	4.5	Reserved

Light Duty Trucks 2:

Model Years	Hydro	ocarbons	Carbon Monoxide		Oxides of Nitrogen	
	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)	Composite (gpm)	Phase 2 (gpm)
1996 +						
-(≤5750	0.80	0.50	13.0	10.0	1.8	Reserved
<u>ALVW)</u>						
-(> 5750	0.80	0.50	15.0	12.0	2.0	Reserved
<u>ALVW)</u>						
1988-1995	1.60	1.00	40.0	32.0	3.5	Reserved
1984-1987	1.60	1.00	40.0	32.0	4.5	Reserved
1981-1983	3.40	2.00	70.0	56.0	4.5	Reserved

(Source: Repealed at 35 Ill. Reg.____, effective ____)

Section 240.TABLE C Vehicle Exhaust Emission Fast-Pass Standards (Repealed)

a) Vehicles having composite hydrocarbon emission limitations of less than 1.25 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast-pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of less than 20.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fast-pass standards contained in this subsection:

Hydrocarbons	Carbon Monovida
Hydrocaroons	Caroon Monoxide

Second	Composite	Phase 2	Composite	Phase 2
30	0.124	N/A	0.693	N/A
31	0.126	N/A	0.773	N/A
32	0.129	N/A	0.837	N/A
33	0.135	N/A	0.851	N/A
34	0.140	N/A	0.853	N/A
35	0.146	N/A	0.857	N/A
36	0.150	N/A	0.900	N/A
37	0.153	N/A	0.960	N/A
38	0.156	N/A	1.034	N/A
39	0.160	N/A	1.070	N/A
40	0.165	N/A	1.076	N/A
41	0.169	N/A	1.083	N/A
42	0.172	N/A	1.102	N/A
43	0.173	N/A	1.111	N/A
44	0.177	N/A	1.114	N/A
45	0.197	N/A	1.157	N/A
46	0.200	N/A	1.344	N/A
47	0.208	N/A	1.482	N/A
48	0.221	N/A	1.530	N/A
49	0.232	N/A	1.542	N/A
50	0.235	N/A	1.553	N/A
51	0.238	N/A	1.571	N/A
52	0.240	N/A	1.595	N/A
53	0.242	N/A	1.633	N/A
54	0.246	N/A	1.685	N/A
55	0.249	N/A	1.689	N/A
56	0.252	N/A	1.693	N/A
57	0.261	N/A	1.700	N/A
58	0.271	N/A	1.723	N/A
59	0.276	N/A	1.852	N/A
60	0.278	N/A	1.872	N/A
61	0.280	N/A	1.872	N/A
62	0.282	N/A	1.872	N/A
63	0.283	N/A	1 .900	N/A
64	0.284	N/A	1.917	N/A
65	0.285	N/A	1.944	N/A
66	0.286	N/A	2.000	N/A
67	0.288	N/A	2.060	N/A
68	0.291	N/A	2.064	N/A
69	0.294	N/A	2.076	N/A
70	0.296	N/A	2.104	N/A
71	0.298	N/A	2.117	N/A

72	0.300	N/A	2 .125	N/A
73	0.302	N/A	2.130	N/A
74	0.304	N/A	2.138	N/A
75	0.307	N/A	2.152	N/A
76	0.308	N/A	2.170	N/A
77	0.308	N/A	2.188	N/A
78	0.308	N/A	2.200	N/A
79	0.314	N/A	2.212	N/A
80	0.320	N/A	2.212	N/A
81	0.324	N/A	2.221	N/A
82	0.327	N/A	2.222	N/A
83	0.329	N/A	2.227	N/A
84	0.333	N/A	2.236	N/A
85	0.336	N/A	2.243	N/A
86	0.339	N/A	2.262	N/A
87	0.343	N/A	2.27 1	N/A
88	0.347	N/A	2.284	N/A
89	0.350	N/A	2.299	N/A
90	0.356	N/A	2.308	N/A
91	0.358	N/A	2.326	N/A
92	0.360	N/A	2.330	N/A
93	0.363	N/A	2.331	N/A
94	0.367	N/A	2.344	N/A
9 5	0.370	N/A	2.347	N/A
96	0.372	N/A	2.355	N/A
97	0.376	N/A	2.395	N/A
98	0.388	N/A	2.451	N/A
99	0.396	N/A	2.508	N/A
100	0.405	N/A	2.590	N/A
101	0.410	N/A	2.660	N/A
102	0.411	N/A	2.749	N/A
103	0.412	N/A	2.913	N/A
104	0.413	N/A	3.162	N/A
105	0.421	N/A	3.170	N/A
106	0.428	N/A	3.197	N/A
107	0.430	N/A	3.288	N/A
108	0.455	N/A	3.419	N/A
109	0.459	0.015	3.587	0.168
110	0.462	0.017	3. 595	0.173
111	0.464	0.021	3.640	0.237
112	0.466	0.024	3.740	0.266
112 113	0.468	0.024	3.868	0.280
113 114	0.471	0.025	3.877	0.291
115	0.488	0 .026	3.934	0.211
116	0.513	0.029	4.015	0.311
117	0.538	0.029 0.032	4.061	0.345
111	0.550	J.U.J.L	1.001	0.5 15

118	0.561	0.035	4.063	0.350
119	0.577	0.035	4.079	0.356
120	0.580	0.036	4.140	0.367
121	0.586	0.038	4.185	0.388
122	0.594	0.040	4.199	0.407
123	0.603	0.041	4.205	0.463
124	0.610	0.042	4.212	0.480
125	0.615	0.042	4.232	0.506
126	0.624	0.042	4.298	0.518
127	0.628	0.045	4.344	0.522
128	0.632	0.046	4.361	0.525
129	0.637	0.046	4.366	0.528
130	0.641	0.049	4.369	0.530
131	0.643	0.050	4.372	0.530
132	0.644	0.052	4.435	0.534
133	0.645	0.054	4.523	0.550
134	0.647	0.054	4.524	0.554
135	0.651	0.054	4.525	0.590
136	0.658	0.055	4.531	0.616
137	0.663	0.055	4.534	0.639
138	0.666	0.056	4.542	0.653
139	0.668	0.059	4.553	0.662
140	0.670	0.061	4.554	0.683
141	0.672	0.061	4.554	0.696
142	0.675	0.061	4.554	0.708
143	0.678	0.063	4.554	0.721
144	0.681	0.064	4.554	0.739
145	0.684	0.065	4.554	0.742
146	0.686	0.066	4.554	0.743
147	0.688	0.067	4.554	0.745
148	0.690	0.068	4.554	0.748
149	0.692	0.069	4.554	0.751
150	0.694	0.070	4.554	0.762
151	0.696	0.071	4.556	0.789
152	0.698	0.072	4.556	0.790
153	0.700	0.073	4.565	0.794
154	0.702	0.073	4.612	0.799
155	0.704	0.074	4.834	0.805
156	0.706	0.077	5.702	0.842
157	0.708	0.079	5.841	0.990
158	0.710	0.082	6.170	1.038
159	0.712	0.082 0.082	6.670	1.357
160	0.716	0.082 0.086	7.425	1.357 1.455
161	0.750	0.000 0.095	8.379	1.133 1.546
162	0.784	0.093 0.107	9.648	1.824
162 163	0.70 -1	0.107 0.115	10.918	2.746
100	0.005	0.110	10.710	2., 10

1.64	0.040	0.100	10 157	2.072
164	0.840	0.122	12.157	3.073
165	0.853	0.127	12.731	3.633
166	0.874	0.159	12.831	4.505
167	0.903	0.186	12.892	4.952
168	0.910	0.189	12.932	5.254
169	0.914	0.200	13.702	5.730
170	0.916	0.220	14.139	6.051
171	0.919	0.236	14.964	6.333
172	0.931	0.247	15.704	6.490
173	0.948	0.257	16.253	6.796
174	0.983	0.267	16.907	7.205
175	1.018	0.283	17.655	8.151
176	1.027	0.295	18.020	8.230
177	1.035	0.312	18.349	8.584
178	1.051	0.318	18.671	8.800
179	1.074	0.323	18.972	8.847
180	1.084	0.337	19.228	8.913
181	1.099	0.345	20.123	9.122
182	1.121	0.350	20.405	9.532
183	1.132	0.359	20.754	10.256
184	1.152	0.387	21.684	10.862
185	1.161	0.398	21.955	10.996
186	1.168	0.400	22.650	11.206
187	1.175	0.402	22.989	11.514
188	1.181	0.405	23.535	11.894
189	1.188	0.418	23.876	12.019
190	1.203	0.429	24.018	12.170
191	1.219	0.442	24.464	12.517
192	1.233	0.457	24.685	12.598
193	1.251	0.473	24.931	12.625
194	1.255	0.487	25.188	12.653
195	1.258	0.501	25.468	12.777
196	1.265	0.510	25.627	12.906
197	1.280	0.512	25.746	12.989
198	1.293	0.514	25.850	13 .060
199	1.301	0.516	25.974	13.165
200	1.313	0.518	26.141	13.242
201	1.324	0.527	26.225	13.412
202	1.332 1.332	0.540	26.338	13.112 13.662
203	1.341	0.547	26.547	13.002 13.773
203 204	1.357	0.553	26.818	13.773 13.942
205	1.375	0.559	27.052	14.090
203 206	1.373 1.392	0.563	27.032 27.393	14.090 14.224
200 207	1.392 1.408	0.567	27.593 27.501	14.224 14.426
207 208	1.408 1.422	0.571	27.501 27.632	14.428 14.498
		0.571 0.575	27.832 27.803	14.498 14.776
209	1.433	v.ə/ə	27.8U3	14.//0

210	1.443	0.579	27.953	14.907
211	1.453	0.595	28.205	14.916
212	1.463	0.605	28.543	15.014
213	1.468	0.614	28.997	15.221
214	1.470	0.622	29.000	15.472
215	1.474	0.627	29.005	15.555
216	1.478	0.638	29.081	15.652
217	1.481	0.643	29.281	15.969
218	1.484	0.643	29.483	16.028
219	1.487	0.645	29.734	16.375
220	1.490	0.651	29.803	16.487
221	1.493	0.655	29.821	16.524
222	1.504	0.663	29.847	16.578
223	1.522	0.671	29.862	16.684
224	1.547	0.675	29.873	16.755
225	1.549	0.684	30.008	16.770
226	1.562	0.694	30.126	16.805
227	1.574	0.701	30.127	16.865
228	1.579	0.702	30.127	16.960
229	1.584	0.708	30.208	16.960
230	1.589	0.708	30.314	16.962
231	1.590	0.709	30.323	16.988
232	1.596	0.710	30.325	17.072
233	1.598	0.710	30.368	17.094
234	1.604	0.711	30.411	17.184
235	1.610	0.712	30.416	17.187
236	1.612	0.712	30.428	17.188
237	1.613	0.712	30.430	17.189
238	1.614	0.713	30.452	17.241
239	1.615	0.716	30.488	17.370

b) Vehicles having composite hydrocarbon emission limitations of at least 1.25 grams per mile but less than 2.00 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast pass standards contained in this subsection. Vehicles having and composite carbon monoxide emission limitations of at least 20.0 grams per mile but less than 30.0 grams per mile, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fast-pass standards contained in this subsection;

	Hydrocarbons-		Carbon Monoxide	
Second	Composite	Phase 2	Composite	Phase 2
30	0.247	N/A	1.502	N/A
31	0.253	N/A	1.546	N/A
32	0.258	N/A	1.568	N/A

33	0.263	N/A	1.582	N/A
34	0.268	N/A	1.593	N/A
35	0.277	N/A	1.602	N/A
36	0.283	N/A	1.621	N/A
37	0.293	N/A	1.631	N/A
38	0.297	N/A	1.702	N/A
39	0.298	N/A	1.784	N/A
40	0.313	N/A	1.879	N/A
41	0.320	N/A	2.162	N/A
42	0.327	N/A	2.307	N/A
43	0.342	N/A	2.343	N/A
44	0.360	N/A	2.376	N/A
45	0.376	N/A	2.406	N/A
46	0.389	N/A	2.433	N/A
47	0.408	N/A	2.458	N/A
48	0.423	N/A	2 .483	N/A
49	0.434	N/A	2.774	N/A
50	0.444	N/A	2.844	N/A
51	0.454	N/A	2.900	N/A
52	0.465	N/A	2.936	N/A
53	0.472	N/A	3.133	N/A
54	0.478	N/A	3.304	N/A
55	0.485	N/A	3.407	N/A
56	0.493	N/A	3.456	N/A
57	0.500	N/A	3.480	N/A
58	0.505	N/A	3.518	N/A
59	0.514	N/A	3.560	N/A
60	0.537	N/A	3.593	N/A
61	0.540	N/A	3.628	N/A
62	0.543	N/A	3.641	N/A
63	0.546	N/A	3.655	N/A
64	0.551	N/A	3.680	N/A
65	0.559	N/A	3.700	N/A
66	0.567	N/A	3.728	N/A
67	0.575	N/A	3.857	N/A
68	0.588	N/A	3.894	N/A
69	0.595	N/A	3.943	N/A
70	0.601	N/A	3.983	N/A
71	0.606	N/A	4 .009	N/A
72	0.610	N/A	4.023	N/A
73	0.617	N/A	4.023	N/A
74	0.631	N/A	4.053	N/A
75	0.643	N/A	4.063	N/A
76	0.651	N/A	4.077	N/A
77	0.659	N/A	4.225	N/A
78	0.667	N/A	4.243	N/A

79	0.676	N/A	4.260	N/A
80	0.681	N/A	4.282	N/A
81	0.685	N/A	4.322	N/A
82	0.689	N/A	4.398	N/A
83	0.694	N/A	4.482	N/A
84	0.700	N/A	4.515	N/A
85	0.705	N/A	4.518	N/A
86	0.709	N/A	4.520	N/A
87	0.713	N/A	4.522	N/A
88	0.717	N/A	4.522	N/A
89	0.721	N/A	4.523	N/A
90	0.724	N/A	4.526	N/A
91	0.727	N/A	4.527	N/A
92	0.729	N/A	4.527	N/A
93	0.731	N/A	4.528	N/A
94	0.734	N/A	4.528	N/A
95	0.740	N/A	4.528	N/A
96	0.748	N/A	4. 529	N/A
97	0.759	N/A	4.575	N/A
98	0.771	N/A	4.703	N/A
99	0.783	N/A	4.805	N/A
100	0.793	N/A	4.886	N/A
101	0.810	N/A	4 .957	N/A
102	0.823	N/A	5.104	N/A
103	0.836	N/A	5.340	N/A
104	0.853	N/A	5.496	N/A
105	0.871	N/A	5.625	N/A
106	0.887	N/A	5.815	N/A
107	0.899	N/A	6.473	N/A
108	0.931	N/A	7.037	N/A
109	0.947	0.040	7.419	0.246
110	0.957	0.047	7.643	0.257
111	0.965	0.052	7.759	0.286
112	0.971	0.056	7.824	0.379
113	0.977	0.061	7.889	0.425
114	0.983	0.064	7.960	0.457
115	1.003	0.072	8.024	0.477
116	1.030	0.081	8.076	0.494
117	1.041	0.082	8.111	0.504
118	1.050	0.083	8.130	0.512
119	1.052	0.092	8.148	0.519
120	1.055	0.094	8.211	0.529
121	1.061	0.097	8.478	0.529
122	1.071	0.100	8.548	0.530
123	1.081	0.103	8.561	0.531
124	1.091	0.106	8.568	0.532

125	1.102	0.108	8.572	0.533
126	1.110	0.110	8.584	0.548
127	1.116	0.112	8.592	0.610
128	1.121	0.114	8.596	0.614
129	1.125	0.116	8.597	0.622
130	1.128	0.118	8.601	0.631
131	1.130	0.120	8.605	0.640
132	1.132	0.122	8.608	0.646
133	1.134	0.123	8.626	0.650
134	1.135	0.124	8.650	0.652
135	1.143	0.127	8.660	0.738
136	1.147	0.130	8.767	0.754
137	1.156	0.134	9.029	0.780
138	1.163	0.139	9.238	0.795
1 39	1.186	0.146	9.389	0.804
140	1.253	0.149	9.493	0.810
141	1.262	0.151	9.583	0.815
142	1.271	0.153	9.626	0.818
143	1.277	0.155	9.669	0.821
144	1.283	0.157	9.716	0.825
145	1.291	0.162	9.763	0.840
146	1.294	0.164	9.809	0.847
147	1.296	0.166	9.852	0.855
148	1.298	0.168	9.885	0.865
149	1.303	0.169	9.932	0.874
150	1.316	0.170	9.986	0.891
151	1.330	0.171	10.039	0.914
152	1.342	0.172	10.072	0.929
153	1.348	0.173	10.090	0.937
154	1.353	0.175	10.105	0.942
155	1.362	0.178	10.146	0.949
156	1.365	0.180	10.245	1.375
157	1.366	0.189	10.397	1.576
158	1.373	0.198	10.923	1.943
159	1.397	0.203	11.970	2.820
160	1.422	0.207	13.421	3.281
161	1.440	0.214	15.289	3.483
162	1.452	0.221	15.912	3.620
163	1.465	0.229	16.530	4.168
164	1.509	0.247	17.622	4.338
165	1.533	0.274	18.366	4.682
166	1.555	0.309	19.869	5.633
167	1.576	0.318	20.711	6.137
168	1.598	0.322	22.319	6.853
169	1.618	0.333	23.751	7.136
170	1.636	0.343	24.842	7.320
		3.0.0	_	

172 1.685 0.385 25.798 8.052 173 1.726 0.409 26.122 8.344 174 1.742 0.433 26.353 8.602 175 1.756 0.453 26.638 8.898 176 1.769 0.463 27.219 9.251 177 1.784 0.507 27.279 10.253 178 1.802 0.523 27.320 10.828 179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.852 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 <	171	1.666	0.356	25.410	7.685
174 1.742 0.433 26.353 8.602 175 1.756 0.453 26.638 8.898 176 1.769 0.463 27.219 9.251 177 1.784 0.507 27.279 10.253 178 1.802 0.523 27.320 10.828 179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.334 14.839 189 1.991 0.629 31.833 14.839 189	172	1.685	0.385	25.798	8.052
175 1.756 0.453 26.638 8.898 176 1.769 0.463 27.219 9.251 177 1.784 0.507 27.279 10.253 178 1.802 0.523 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191	173	1.726	0.409	26.122	8.344
176 1.769 0.463 27.219 9.251 177 1.784 0.507 27.279 10.253 178 1.802 0.523 27.320 10.828 179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.331 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191	174	1.742	0.433	26.353	8.602
177 1.784 0.507 27.279 10.253 178 1.802 0.523 27.320 10.828 179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.855 15.141 192 2.001 0.659 33.153 15.595 193	175	1.756	0.453	26.638	8.898
178 1.802 0.523 27.320 10.828 179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193	176	1.769	0.463	27.219	9.251
179 1.822 0.528 27.352 10.933 180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194	177	1.784	0.507	27.279	10.253
180 1.843 0.541 27.822 11.060 181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195	178	1.802	0.523	27.320	10.828
181 1.864 0.549 28.763 11.188 182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196	179	1.822	0.528	27.352	10.933
182 1.884 0.559 29.402 11.345 183 1.896 0.571 29.971 11.733 184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197	180	1.843	0.541	27.822	11.060
183 1,896 0,571 29,971 11,733 184 1,915 0,584 30,276 12,598 185 1,940 0,598 30,988 12,953 186 1,958 0,613 31,095 13,213 187 1,972 0,624 31,314 14,131 188 1,985 0,629 31,833 14,839 189 1,991 0,629 32,239 15,137 190 1,993 0,638 32,547 15,138 191 1,995 0,648 32,855 15,141 192 2,001 0,659 33,153 15,595 193 2,015 0,663 33,444 15,658 194 2,031 0,671 33,482 15,704 195 2,047 0,681 33,516 15,729 195 2,047 0,681 33,516 15,729 196 2,063 0,693 33,519 16,058 197	181	1.864	0.549	28.763	11.188
184 1.915 0.584 30.276 12.598 185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199	182	1.884	0.559	29.402	11.345
185 1.940 0.598 30.988 12.953 186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200	183	1.896	0.571	29.971	11.733
186 1.958 0.613 31.095 13.213 187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201	184	1.915	0.584	30.276	12.598
187 1.972 0.624 31.314 14.131 188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.302 202	185	1.940	0.598	30.988	12.953
188 1.985 0.629 31.833 14.839 189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203	186	1.958	0.613	31.095	13.213
189 1.991 0.629 32.239 15.137 190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204	187	1.972	0.624	31.314	14.131
190 1.993 0.638 32.547 15.138 191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205	188	1.985	0.629	31.833	14.839
191 1.995 0.648 32.855 15.141 192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206	189	1.991	0.629	32.239	15.137
192 2.001 0.659 33.153 15.595 193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.2222 0.854 35.418 18.553 207	190	1.993	0.638	32.547	15.138
193 2.015 0.663 33.444 15.658 194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208	191	1.995	0.648	32.855	15.141
194 2.031 0.671 33.482 15.704 195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209	192	2.001	0.659	33.153	15.595
195 2.047 0.681 33.516 15.729 196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210	193	2.015	0.663	33.444	15.658
196 2.063 0.693 33.549 16.058 197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211	194	2.031	0.671	33.482	15.704
197 2.079 0.709 33.653 16.987 198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212	195	2.047	0.681	33.516	15.729
198 2.094 0.725 33.973 17.064 199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213	196	2.063	0.693	33. 549	16.058
199 2.109 0.740 34.159 17.073 200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214	197	2.079	0.709	33.653	16.987
200 2.122 0.754 34.191 17.153 201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	198	2.094	0.725	33.973	17.064
201 2.130 0.767 34.250 17.332 202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	199	2.109	0.740	34.159	17.073
202 2.137 0.775 34.469 17.406 203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	200	2.122	0.754	34.191	17.153
203 2.157 0.787 34.716 17.641 204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	201	2.130	0.767	34.250	17.332
204 2.172 0.795 34.969 17.922 205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	202	2.137	0.775	34.469	17.406
205 2.194 0.803 35.144 18.484 206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	203	2.157	0.787	34.716	17.641
206 2.222 0.854 35.418 18.553 207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	204	2.172	0.795		17.922
207 2.245 0.859 35.766 18.658 208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	205	2.194	0.803	35.144	18.484
208 2.268 0.872 35.949 18.953 209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	206	$\frac{2.222}{2}$	0.854	35.418	18.553
209 2.279 0.892 36.010 19.266 210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	207	2.245	0.859	35.766	18.658
210 2.288 0.896 36.548 19.309 211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	208	2.268	0.872	35.949	18.953
211 2.301 0.903 37.179 19.731 212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	209	2.279	0.892	36.010	19.266
212 2.316 0.924 37.651 19.902 213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	210	2.288	0.896	36.548	19.309
213 2.332 0.938 38.041 20.012 214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	211		0.903	37.179	19.731
214 2.345 0.941 38.591 20.260 215 2.354 0.951 38.852 20.739	212	2.316	0.924	37.651	19.902
215 2.354 0.951 38.852 20.739	213	2.332	0.938	38.041	20.012
	214	2.345	0.941	38.591	20.260
216 2.362 0.966 38.861 21.346	215	2.354	0.951	38.852	20.739
	216	2.362	0.966	38.861	21.346

217	2.368	0.979	38.926	21.810
218	2.376	0.980	39.194	22.001
219	2.384	0.981	39.474	22.290
220	2.391	1.005	39.668	22.324
221	2.395	1.016	39.781	22.343
222	2.400	1.022	39.890	22.522
223	2.405	1.028	39.954	22.661
224	2.409	1.035	39.984	22.666
225	2.413	1.041	39.989	22.667
226	2.415	1.045	39.990	22.668
227	2.417	1.051	39.990	22.669
228	2.419	1.055	39.990	22.670
229	2.420	1.059	39.991	22.671
230	2.421	1.062	40.012	22.671
231	2.423	1.063	40.061	22.672
232	2.425	1.063	40.116	22 .673
233	2.427	1.063	40.249	22.673
234	2.429	1.064	40.253	22.673
235	2.430	1.064	40.290	22.674
236	2.431	1.066	40.385	22.675
237	2.432	1.069	40.488	22.675
238	2.433	1.072	40.720	22.675
239	2.434	1.075	40.763	22.677

e) Vehicles having composite hydrocarbon emission limitations of 2.00 grams per mile or greater, in Section 240.Table A or Section 240.Table B, shall use the hydrocarbon fast-pass standards contained in this subsection. Vehicles having composite carbon monoxide emission limitations of 30.0 grams per mile or greater, in Section 240.Table A or Section 240.Table B, shall use the carbon monoxide fast-pass standards contained in this subsection:

	Hydrocarbons-		Carbon Monoxide	
Second	Composite	Phase 2	Composite	Phase 2
30	0.407	N/A	3.804	N/A
31	0.415	N/A	3.985	N/A
32	0.423	N/A	4.215	N/A
33	0.436	N/A	4.440	N/A
34	0.451	N/A	4 .579	N/A
35	0.464	N/A	4.688	N/A
36	0.468	N/A	4.749	N/A
37	0.475	N/A	4 .783	N/A
38	0.487	N/A	4.813	N/A
39	0.506	N/A	4.876	N/A
40	0.530	N/A	5.104	N/A

41	0.549	N/A	5.217	N/A
42	0.569	N/A	5.383	N/A
43	0.588	N/A	5.571	N/A
44	0.609	N/A	5.888	N/A
45	0.621	N/A	6.199	N/A
46	0.636	N/A	6.245	N/A
47	0.649	N/A	6.318	N/A
48	0.666	N/A	6.418	N/A
49	0.679	N/A	6.540	N/A
50	0.696	N/A	6.690	N/A
51	0.712	N/A	6.875	N/A
52	0.727	N/A	7.029	N/A
53	0.745	N/A	7.129	N/A
54	0.760	N/A	7.359	N/A
55	0.776	N/A	7.722	N/A
56	0.797	N/A	8.017	N/A
57	0.814	N/A	8.249	N/A
58	0.826	N/A	8.425	N/A
59	0.837	N/A	8.563	N/A
60	0.849	N/A	8.686	N/A
61	0.862	N/A	8.804	N/A
62	0.872	N/A	8.916	N/A
63	0.887	N/A	9.025	N/A
64	0.895	N/A	9.138	N/A
65	0.903	N/A	9.250	N/A
66	0.925	N/A	9.354	N/A
67	0.933	N/A	9.457	N/A
68	0.945	N/A	9.575	N/A
69	0.959	N/A	9.728	N/A
70	0.970	N/A	9.938	N/A
71	0.980	N/A	10.140	N/A
72	0.988	N/A	10.222	N/A
73	0.997	N/A	10.261	N/A
74	1.022	N/A	10.278	N/A
75	1.037	N/A	10.290	N/A
76	1.051	N/A	10.715	N/A
77	1.064	N/A	10.790	N/A
78	1.075	N/A	10.844	N/A
79	1.087	N/A	10.921	N/A
80	1.097	N/A	11.010	N/A
81	1.105	N/A	11.090	N/A
82	1.114	N/A	11.136	N/A
83	1.136	N/A	11.136	N/A
84	1.160	N/A	11.165	N/A
85	1.182	N/A	11.191	N/A
86	1.201	N/A	11.205	N/A
	1.201	- 1/	11.200	1 1/ I I

87	1.217	N/A	11.211	N/A
88	1.233	N/A	11.211	N/A
89	1.248	N/A	11.211	N/A
90	1.262	N/A	11.211	N/A
91	1.271	N/A	11.220	N/A
92	1.279	N/A	11.294	N/A
93	1.287	N/A	11 .332	N/A
94	1.295	N/A	11.355	N/A
<u>95</u>	1.302	N/A	11.383	N/A
96	1.309	N/A	11.410	N/A
97	1.316	N/A	11.433	N/A
98	1.325	N/A	11.516	N/A
99	1.339	N/A	11.820	N/A
100	1.356	N/A	12.104	N/A
101	1.365	N/A	12.344	N/A
102	1.378	N/A	12.781	N/A
103	1.397	N/A	13.472	N/A
104	1.420	N/A	14.405	N/A
105	1.445	N/A	14.808	N/A
106	1.470	N/A	14.965	N/A
107	1.491	N/A	15.121	N/A
108	1.506	N/A	15.372	N/A
109	1.517	0.151	15.530	1.113
110	1.528	0.159	15.687	1.213
111	1.542	0.172	16.018	1.344
112	1.559	0.186	16.527	1.399
113	1.578	0.199	16.810	1.520
114	1.594	0.207	16.961	1.640
115	1.605	0.216	17.120	1.684
116	1.615	0.229	17.135	1.693
117	1.625	0.235	17.249	1.786
118	1.642	0.240	17.451	2.007
119	1.670	0.245	17.509	2.084
120	1.694	0.261	17.605	2.179
121	1.705	0.267	17.734	2.264
122	1.717	0.277	18.049	2.328
123	1.732	0.287	18.447	2.375
124	1.747	0.298	18.592	2.437
125	1.763	0.308	18.657	2.543
126	1.779	0.316	18.796	2.593
127	1.795	0.322	18.952	2.641
128	1.810	0.329	19.137	2.663
129	1.823	0.338	19.329	2.672
130	1.835	0.346	19.519	2.676
131	1.845	0.354	19.707	2.683
131 132	1.854	0.356	19.882	2.817
132	1.051	3.550	17.002	2.017

100	1.072	0.055	10.005	2 002
133	1.862	0.357	19.905	2.992
134	1.870	0.359	20.049	3.111
135	1.883	0.362	20.460	3.234
136	1.888	0.364	20.746	3.304
137	1.896	0.368	21.068	3.310
138	1.911	0.378	21.380	3.320
139	1.928	0.391	21.748	3.354
140	1.949	0.402	22.046	3.436
141	1.969	0.408	22.348	3.443
142	1.982	0.422	22.397	3.452
143	1.999	0.428	22.407	3.490
144	2.011	0.432	22.417	3.552
145	2.022	0.434	22.922	3.588
146	2.035	0.439	22.951	3.600
147	2.043	0.450	22.976	3.616
148	2.049	0.460	23.017	3.627
149	2.063	0.467	23.073	3.636
150	2.085	0.472	23.161	3.676
151	2.104	0.480	23.218	3.882
152	2.117	0.491	23.253	4.011
153	2.127	0.503	23.337	4.047
154	2.138	0.505	23.425	4.067
155	2.152	0.515	23.534	4.081
156	2.168	0.522	23.652	4.116
157	2.186	0.527	23.739	4.251
158	2.205	0.537	24.606	5.099
159	2.224	0.549	25.615	5.383
160	2.242	0.568	26.073	6.362
161	2.268	0.586	28.496	7.926
162	2.308	0.610	29.772	8.429
163	2.352	0.648	31.056	9.201
164	2.406	0.677	33.351	10.825
165	2.421	0.699	34.890	12.291
166	2.435	0.720	35.937	13.366
167	2.470	0.738	37.012	14.428
168	2.501	0.767	37.892	15.318
169	2.537	0.828	39.028	15.699
170	2.571	0.855	40.406	16.073
170 171	2.625	0.869	41.379	16.475
172	2.657	0.885	42.033	17.158
172 173	2.683	0.900	42.432	17.130 17.532
173 174	2.701	0.941	42.742	17.965
174 175	2.701 2.717	0.941 0.979	42.742 4 3.399	17.903 18.242
173 176	2.717 2.732	1.002	43.895	18.242 18.283
170 177	2.752 2.756	1.002 1.025	43.893 44.227	18.480
	2.730 2.781			
178	2./ð1	1.047	44.926	19.576

179	2.811	1.065	45.256	20.015
180	2.853	1.089	45.553	20.203
181	2.898	1.109	45.753	20.433
182	2.946	1.133	46.210	21.025
183	2.988	1.158	47.017	21.882
184	3.023	1.184	48.185	22.204
185	3.057	1.209	48.741	22.859
186	3.076	1.222	49.462	23.533
187	3.101	1.231	50.313	24.281
188	3.120	1.239	51.285	25.078
189	3.136	1.254	52.076	25.276
190	3.151	1.278	52.857	25.578
191	3.163	1.300	52.876	25.859
192	3.209	1 .313	53.067	25.985
193	3.223	1.324	53.777	26.153
194	3.237	1.340	54.242	26.582
195	3.263	1.367	54.489	27.067
196	3.302	1.387	54.601	27.456
197	3.338	1.402	54.912	27.805
198	3.372	1.417	55.588	28.070
199	3.390	1.432	56.266	28.590
200	3.428	1.446	56.617	28.914
201	3.470	1.460	56.863	29.063
202	3.493	1.477	57.204	29.502
203	3.509	1.492	57.371	29.697
204	3.522	1.501	57.487	29.713
205	3.533	1.510	57.728	29.783
206	3.550	1.522	58.097	29.942
207	3.578	1.561	58.572	30.284
208	3.607	1.585	59.024	30.755
209	3.630	1.597	59.321	31.287
210	3.658	1.607	59.715	31.549
211	3.701	1.627	60.045	31.820
212	3.745	1.645	60.453	32.250
213	3.778	1.656	60.935	32.546
214	3.814	1.663	61.307	32.808
215	3.825	1.669	61.666	33.060
216	3.835	1.674	62.148	33.204
217	3.844	1.685	62.532	33.341
218	3.853	1.700	62.546	33.414
219	3.864	1.704	62.559	33.514
220	3.874	1.70 4 1.706	62.570	33.640
221	3.891	1.709	62.846	33.692
222	3.928	1.711	63.097	33.711
222 223	3.966	1.714	63.150	33.733
223 224	4.008	1.718	63.150	33.770
	1.000	1.710	05.150	55.110

225	4.010	1.721	63.150	33.796
226	4.012	1.723	63.150	33.810
227	4.016	1.726	63.150	33.821
228	4 .019	1.729	63.150	33.839
229	4.057	1.731	63.150	33.865
230	4.065	1.733	63.150	33.894
231	4.071	1.735	63.150	33.918
232	4.073	1.743	63.150	33.944
233	4.075	1.749	63.150	33.985
234	4.077	1.753	63.153	34.014
235	4.079	1.757	63.159	34.032
236	4.081	1.762	63.173	34.051
237	4.083	1.767	63.193	34.067
238	4.084	1.772	63.214	34.079
239	4.085	1.776	63.233	34.085

(Source: Repealed at 35 Ill. Reg.____, effective ____)

IT IS SO ORDERED.

I, John T. Therriault, Assistant Clerk of the Illinois Pollution Control Board, certify that the Board adopted the above opinion and order on December 16, 2010, by a vote of 5-0.

John T. Therriault, Assistant Clerk

Illinois Pollution Control Board